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Abstract
A mechanism for the downturn of inverse magnetic susceptibility below an intermediate
temperature, recently observed in many experiments, is proposed as an intrinsic feature of
lattices with triangle-based frustrated geometries. The temperature at the bending of the inverse
susceptibility curve may be related to the features of other thermodynamic properties; the hump
of the specific heat and the emergence of a 1/3 plateau in magnetization under a magnetic field.
This fact is derived through a Monte Carlo simulation study of the Ising model on triangular
and kagome lattices, and the exact calculation for the single and small-sized triangle clusters,
on both the Ising and Heisenberg models. These results may indicate the dominance of
S(Sz) = 1/2 quantum (classical) trimer formation in the intermediate-energy regime in
two-dimensional triangle-based lattices.

1. Introduction

As a feature of frustration, the suppression of long-range
ordering or freezing temperature has been well known for
various lattice systems, and several recent investigations have
focused on exotic low energy properties [1–4]. Recent
investigations on newly synthesized systems have aroused
interest not only in the low energy regime but also the
intermediate energy regime, comparable with the nearest
neighbor (nn) exchange interaction.

The intermediate energy phenomenon of interest to us
is the sharp upturn of the magnetic susceptibility below
intermediate temperatures, commonly found in spin systems
with triangle-based frustrated geometry, without any indication
of long-range ordering. That is, the inverse susceptibility
changes from a high-temperature Curie–Weiss (CW)-like
form to a low-temperature Curie-like form. The triangular
NaTiO2 [5], kagome ScCr9 pGa12−9 pO19 (SCGO) [6, 7],
ZnCu3(OH)6Cl2 [8] and three-dimensional triangle network
garnet system Gd3Ga5O12 [9] are typical examples with regular
structures. Several systems with modified structures have
also been recognized as showing the feature, for example,
volborthite Cu3V2O7(OH)2 (modified kagome system) [10],
the bilayer system Ba2Sn2ZnCr7 pGa10−7 pO22 [11], triangular
cluster compounds [12, 13] etc.

To the best of our knowledge, this was first detected
theoretically as the almost temperature-independent mean-
squared magnetization in the low-temperature region in a
Monte Carlo (MC) simulation study for the Ising and
Heisenberg spins on the triangular lattice by Sano [14].
The mean-squared magnetization gives the susceptibility
by dividing by the temperature in the disordered state,
then the susceptibility results in the Curie-like temperature
dependence. However, the author did not refer to the
temperature dependence. A subsequent study might be
the phenomenological description for accounting for the
susceptibility of SCGO [15] by Schiffer and Daruka [16],
where the two separate contributions were assumed to be
orphan and correlated spins for two temperature regimes of
Curie and CW. As a theoretically controlled approach, high-
temperature series expansion [17–19] was carried out for
the Heisenberg model in two-dimensional frustrated lattices.
However, this approach does not seem to have succeeded
in giving sufficient upturn of susceptibility as found in the
experimental results. For the kagome system ZnCu3(OH)6Cl2,
the origin was attributed to the Dzyaloshinski–Moriya
interaction [20] or defects due to Zn/Cu exchange [21]. In
addition to the bending in the inverse susceptibility, we note
the fact that most of these experimental studies reveal a broad

0953-8984/08/315202+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/31/315202
mailto:misoda@ed.kagawa-u.ac.jp
http://stacks.iop.org/JPhysCM/20/315202


J. Phys.: Condens. Matter 20 (2008) 315202 M Isoda

peak of the specific heat near the temperature of bending of
susceptibility [9].

The purpose of the present study is to attempt to elucidate
a mechanism for the downturn in inverse susceptibility
below an intermediate temperature, which has been found
experimentally. This seems to be common in antiferromagnetic
spin systems with triangle-based lattices. Furthermore, it is
important to clarify whether the mechanism brings the broad
peak in the specific heat. We carried out an MC simulation
study for thermodynamical quantities of the s = 1/2 Ising
model on frustrated triangular and kagome lattices. An MC
study of these quantities has also been carried out in previous
studies [22–25]; however, attention has not been paid to the
upturn in susceptibility in these studies and, furthermore,
the relationship with the behavior of other thermodynamical
quantities. The weak system-size dependence of the qualitative
features in the temperature dependence of thermodynamical
quantities observed in the present MC study has directed us to
the exact calculation of quantities for the single triangle cluster
and for small-sized ones. This approach is also expected to be
supported by the generally believed short correlation lengths
in frustrated systems [26]. The magnetization as a function of
the magnetic field is also calculated to study the 1/3 plateau
found below the temperature characterized by the bending in
susceptibility and the hump in the specific heat.

The paper is structured as follows. In section 2, the results
of the MC simulation are given for the specific heat, magnetic
susceptibility and magnetization under a magnetic field in
the spin-1/2 antiferromagnetic Ising model on triangular and
kagome lattices. In section 3, these quantities are calculated
exactly for a single triangle and small-sized clusters. Section 4
is devoted to discussion and the conclusions.

2. Monte Carlo simulation study

MC simulation was applied for the spin-1/2 antiferromagnetic
Ising spin model for triangular and kagome lattices, to
investigate the specific heat, magnetic susceptibility and
magnetization under a magnetic field. The former two
quantities have already been studied by several researchers
using the same method [22–24]. However, the calculation
is performed again to demonstrate the inverse form of the
susceptibility (which was not shown in the previous studies)
and to mark the characteristic temperature discussed below.
The magnetization process has also been investigated in
the Ising and XXZ models, including the Ising limit on
triangular [27–30] and kagome lattices [31, 32]. However,
these three thermodynamical quantities have not been
considered previously with focus on the relationships between
them.

We have used the usual Metropolis algorithm with a
periodic boundary condition, and MC averages were taken over
104 MC steps usually after 104 thermalization MC steps. For
checking the MC uncertainty, we have made test runs with
up to 106 steps both for averaging and thermalization steps;
however, no remarkable difference was detected to suggest a
meaningful effect in the present discussion.

Figure 1. The specific heat per spin, C , as a function of T for
triangular (closed circle) and kagome (open circle) lattices composed
of 50 × 50 × 3 spins by MC simulation.

The Hamiltonian for the spin-1/2 Ising model is expressed
as

H̃ = 4H = J
∑

〈i, j〉
σiσ j − h

∑

i

σi , (1)

where σi = 2sz
i . sz

i is the z-component of the i th spin and
h is the magnetic field. The summation on 〈i, j〉 denotes it
over the nn sites i and j . The exchange coupling constant is
set to unity (J = 1) with units of energy hereafter for the
antiferromagnetic interaction. H gives the Hamiltonian for the
original spin variable s with the usual expression.

The specific heat, magnetization and longitudinal (z-
component) uniform magnetic susceptibility per spin are
evaluated by the following formulas, respectively:

C = 1

N0T 2
[〈E2〉 − 〈E〉2], (2)

m = 1

N0

〈∣∣∣∣∣
∑

i

σi

∣∣∣∣∣

〉
, (3)

χ = 1

N0T

⎡

⎣
〈(
∑

i

σi

)2〉
−
〈
∑

i

σi

〉2
⎤

⎦ . (4)

Here, N0 represents the total number of spins, T is the
temperature in units of the Boltzmann constant and E is the
internal energy of the system given by the Hamiltonian H̃ . The
thermal average 〈A〉 denotes 〈A〉 = Tr(e−β H̃ A)/Z , where Z
is the partition function of the system, Tr stands for the trace
operation and β = 1/T .

The results for the specific heat C and inverse uniform
magnetic susceptibility χ−1 are shown in figures 1 and 2,
respectively, both for the triangular and kagome lattices. These
results are obtained for a system size of L × L unit cells of
the triangle at L = 50; in other words, the total number of
spins N0 = L × L × 3. The results of the specific heat
are consistent with those in [21, 22], showing a broad hump
for both lattices as a remarkable feature. This hump will be
discussed in section 3.

The inverse susceptibilities for both lattices show the
distinct downturn deviation from the Curie–Weiss-like form at
high temperature to the Curie-like one at low temperature, as
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Figure 2. The inverse uniform magnetic susceptibility per spin, χ−1,
as a function of T for triangular (closed circle) and kagome (open
circle) lattices composed of 50 × 50 × 3 spins by MC simulation.

shown in figure 2. This temperature dependence is qualitatively
consistent with that of the mean-squared magnetization in [14].
In previous investigations, the downturn deviation has not
been recognized and/or properly paid attention to, because the
susceptibility itself, not its inverse, was plotted in figures. This
feature is one of the two issues of interest in this study and the
microscopic interpretation for this will be given in section 3.
The temperature corresponding to the bending nearly coincides
with the temperature at the top of the hump in the specific
heat for each lattice. Then, these temperatures are roughly
estimated as characteristic temperatures T �

triangular ∼ 1.3 and

T �
kagome ∼ 1.6, in triangular and kagome lattices, respectively.

The present lower-temperature Curie-like behavior should be
distinguished from that due to magnetic impurities, often
found in experimental results at sufficiently low temperatures
(T � J ).

The magnetization is also computed as a function of h.
The magnetization reveals the well known 1/3 plateau [27]
in both lattices as shown in figure 3. This 1/3 plateau state
is believed to be the up–up–down (uud) state in the three-
sublattice structure [28, 32]. In the figure, we recognize that
the plateau approximately disappears for temperatures higher
than the characteristic temperature T �

triangular or T �
kagome defined

above. At T = 0, the magnetization is expected to take 1/3 of
the maximum value(=1) for an infinitesimally weak field and

Figure 4. The system-size dependence of the specific heat per spin
as a function of T for the triangular lattice. ◦ represents L = 50, ×
represents L = 20 and � represents L = 5.

jumps from 1/3 to the maximum value through the first order
transition in the present Ising model, as readily imagined, as
a spin flip of the down spin from the uud state. The plateau
at low temperature and in a weak field strongly suggests the
existence of free spins of one-third the total number of spins
in the ground state manifold. The disappearance of the plateau
above the characteristic temperatures is discussed, similar to
the hump of specific heat, from the energy scheme of clusters
given in section 3.

For investigating the system-size effect on three physical
quantities, we have calculated the specific heat and the
magnetic susceptibility for three system sizes, L = 50, 20 and
5. The results indicate that size dependence is not remarkable
for both lattices, as shown in figures 4 and 5 only for the
triangular lattice. It is amazing that even for the very small
size of L = 5, no remarkable change is found in comparison
with those of the larger sizes.

The characteristic temperatures defined above roughly
correspond to the magnitude of the coupling constant J , that
is, nearly equal to unity. Thus, the higher-temperature regime
is the region where each spin interacts individually under the
antiferromagnetic interaction in the mean-field sense, resulting
in CW-like susceptibility with a negative Weiss constant,
similar to the case of non-frustrated lattices. Otherwise, how
should the lower-temperature regime be characterized? Some

Figure 3. The magnetization per spin, m, as a function of h for three temperatures, in triangular and kagome lattices composed of 50 × 50 × 3
spins by the MC method.
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Figure 5. The system-size dependence of the inverse susceptibility
per spin as a function of T for the triangular lattice. ◦ represents
L = 50, × represents L = 20 and � represents L = 5.

studies have attributed this to the existence of ‘orphan’ or ‘free’
spins [16, 25]. However, it may not be conclusively decided
whether the low-temperature Curie-like behavior comes from
isolated free spins in a magnetically disordered or a quantum
singlet background.

Free spins in triangular and kagome lattices may be
produced, e.g. by introducing the three-sublattice structure:
a site belonging to an A sublattice might be occupied by an
up spin and its nn site belonging to an B sublattice by a
down spin, then the third site belonging to the C sublattice may
be ‘free’ as a central site of a hexagon forming the honeycomb
lattice composed of A and B sublattices in the triangular lattice
and as interpenetrating C sites between the stripes of the A–
B-sublattice antiferromagnetic chains in the kagome lattice. In
such a configuration, the number of free spins amounts to one-
third the total number of spins. However, such an example
with a symmetry breaking is only one of the degenerate ground
states in the case of h = 0. Various states with other spin
configurations may exist in the ground state manifold including
one-third number of ‘free’ spins. Such an appearance of free
spins is a feature of frustrated lattices.

For obtaining further insights, we investigated the
temperature dependence of the nn correlation 〈σiσ j 〉nn and
the probability PSz=3/2 of the number of excited Sz = 3/2
triangles among total number of triangles 2N0. These are
shown in figures 6 and 7, respectively. The nn correlation at
the lowest-temperature limit should take the value of −1/3
as easily recognized by considering the algebraic summation
of nn bonds in any ground state configuration, because two
spins are parallel but one is antiparallel in each triangle in the
triangular and kagome lattices. As the temperature is increased
above T ∼ 1, nn spin correlation decreases in magnitude as
shown in figure 6. This would be due to the excitation of a
ferromagnetic bond against the antiferromagnetic interaction.

In addition, the probability of the existence of a triangle
with three parallel spins, which we call the Sz = 3/2 triangle,
PSz=3/2, is shown in figure 7. It begins to increase at T ∼ 1
from zero with increasing temperature. In contrast, the two-up
and one-down (or two-down and one-up) triangle, which we
call the Sz = 1/2 triangle, decreases following 1 − PSz=3/2, as
has also been shown for the Ising model on garnet lattice [25].

Figure 6. The nn spin correlation as a function of T for triangular
and kagome lattices. The system size and the number of steps for
MC averaging are the same as for the previous results.

Figure 7. Probability PSz=3/2 of the number of excited quartet
Sz = 3/2 triangles against the total number of triangles 2N0 as a
function of T for triangular and kagome lattices.

The excitation of three-up (or three-down) Sz = 3/2 triangle
well corresponds to the nn spin correlation for the change in
the temperature dependence at T ∼ 1 in figure 6.

The results in figures 6 and 7 support the idea that
the total states in the ground state are constituted from the
two-up and one-down (or one-up and two-down) triangles.
Then, the mechanism of the anomalies in the thermodynamical
properties shown above may be attributed to the excitation
of a triangle plaquette from the Sz = 1/2 to the Sz =
3/2 triangle with increasing temperature. The picture of the
triangle plaquette excitation might be consistent with the fact
of the absence of system-size dependence of the gradient in
Curie-like inverse susceptibility. The dominance of short-
range correlation is well recognized as the general trend of
geometrically frustrated lattices [26].

3. Exact calculation for single and small-size
triangular clusters

Following the almost unremarkable system-size dependence of
the thermodynamic properties shown in the previous section,
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Figure 8. Energy spectra of Ising and Heisenberg models on a
triangle cluster as a function of the magnetic field h.

Table 1. Eigenvalues and eigenfunctions of the Heisenberg model
triangle cluster.

Eigenvalues Eigenfunctions

ε1 = 3(1 − h) |φ1〉
ε2 = 3(1 + h) |φ2〉
ε3 = −(3 + h)

1√
2
(|φ4〉 − |φ5〉)

1√
6
(−2|φ3〉 + |φ4〉 + |φ5〉)

ε4 = 3 − h 1√
3
(|φ3〉 + |φ4〉 + |φ5〉)

ε5 = −(3 − h)

1√
2
(|φ7〉 − |φ8〉)

1√
6
(−2|φ6〉 + |φ7〉 + |φ8〉)

ε6 = 3 + h 1√
3
(|φ6〉 + |φ7〉 + |φ8〉)

we analytically executed the exact calculation for the three-
spin equilateral triangle cluster. This was expected to reveal
the dominance of short-range correlation on the intermediate
temperature thermodynamical properties. In addition to the
Ising model, the calculation was also done for the Heisenberg
model.

We first consider the Ising single triangle cluster. For the
system, the corresponding energies for H̃ in (1) are

E1 = 3(1 − h), E2 = 3(1 + h),

E3,4,5 = −(1 + h), E6,7,8 = −(1 − h),
(5)

for eight states of

|φ1〉 = |↑ ↑↑〉, |φ2〉 = |↓ ↓↓〉,
|φ3〉 = |↑ ↑↓〉, |φ4〉 = |↑ ↓↑〉,
|φ5〉 = |↓ ↑↑〉, |φ6〉 = |↑ ↓↓〉,
|φ7〉 = |↓ ↑↓〉, |φ8〉 = |↓ ↓↑〉,

(6)

where up and down arrows designate the respective spin of
magnitude 1/2. For a vanishing magnetic field h = 0, the
ground state is the sixfold degenerate Sz = 1/2 states and
the excited state is the twofold degenerate Sz = 3/2 states.
Under the magnetic field, the degeneracy of the ground state
is dissolved into two threefold degenerate states and that of
the twofold degenerate excited state is lifted completely, as
depicted in figure 8.

For the Heisenberg cluster, the Hamiltonian is given by
adding the transverse component

H̃t = 2J
∑

〈i, j〉
(s+

i s−
j + s−

i s+
j ), (7)

Figure 9. The specific heat per spin for a single triangle cluster as a
function of T . Solid and broken curves denote data for the Ising and
Heisenberg models, respectively.

Figure 10. The inverse magnetic susceptibility per spin for Ising
triangular clusters as a function of T . The solid line denotes that for a
single triangle cluster, and those for three types of nine-site and four
types of ten-site triangular clusters are denoted by 9-1, . . . , 9-3 and
10-1, . . . , 10-4, respectively. These finite clusters are depicted in
figure 13. 10-4 denotes the curve for the ten-site two-leg truss-type
cluster.

to (1). After the diagonalization procedure, the eigenvalues and
eigenfunctions shown in table 1 and figure 8 were obtained.

For a vanishing field, the ground state is a fourfold
degenerate doublet (S = 1/2) state with energy ε3,5 = −3
and the excited state is a fourfold degenerate quartet (S = 3/2)
with ε1,2,4,6 = 3. The application of a magnetic field brings the
ground state to the quartet state for h > 3 at T = 0 as shown
in figure 8, resulting in metamagnetic behavior, as explicitly
shown below.

The thermodynamic quantities such as specific heat,
magnetic susceptibility and magnetization under a magnetic
field can be calculated analytically by using the obtained
energy spectra. The analytical expressions obtained are
summarized in the appendix and are shown in figures 9–12.
For these physical quantities, similar features emerge as for the
MC simulation results for the triangular and kagome lattices,
that is, the appearance of the hump in the specific heat, the
downturn in the inverse susceptibility and the 1/3 plateau in
the magnetization process in the lower-temperature regime.

The hump in the specific heat data in figure 9 is found to
be of Schottky type for both models, as recognized from the
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Figure 11. The inverse magnetic susceptibility per spin for
Heisenberg triangular clusters as a function of T . The solid line
denotes that for a single triangle cluster and those for three types of
nine-site and four types of ten-site triangular clusters are denoted by
9-1, . . . , 9-3 and 10-1, . . . , 10-4, respectively.

Figure 12. The magnetization per spin for a single triangle cluster as
a function of h for T = 0.5 and 1.5, which are sufficiently lower than
the characteristic temperatures and nearly equal to the characteristic
temperatures, respectively. The solid and broken lines denote the
data for the Ising and Heisenberg models, respectively.

two-level scheme in the energy spectra at h = 0 in (5) and
table 1. It should be noted that the gap between the two levels
is 4 and 6 for Ising and Heisenberg models, respectively, in
units of J .

On the inverse susceptibility, the results for the Ising and
Heisenberg models are shown by solid lines in figures 10
and 11, respectively. The low-temperature Curie-like behavior
comes from the contribution of the ground Sz or S = 1/2
state for each respective model. By elevating the temperature,
the excited Sz or S = 3/2 state begins to contribute near
the characteristic temperature corresponding to the energy gap.
The characteristic temperature corresponding to the hump of
the specific heat and bending in the inverse susceptibility are
denoted as T c

I and T c
H for the Ising and Heisenberg clusters,

respectively. These temperatures have the same degree of
magnitude as those for lattices, T �

triangular and T �
kagome.

The magnetization under a magnetic field shows a 1/3
plateau, if the temperature is lower than T c

I or T c
H for

each model, as shown in figure 12. The magnetic field
and temperature dependence of magnetization are readily
recognized from the energy spectra in figure 8. At a
temperature of absolute zero, the magnetization at the limit of
the weak field has a finite value of m(T = 0, h → 0) = 1/3,

Figure 13. Finite triangular clusters used in exact-calculation studies
of specific heat and inverse susceptibility. Depicted numbers
correspond to those in figures 10 and 11.

in contrast to the case of the Ising-like anisotropic Heisenberg
model [29]. The magnitude of h at the steep rise from the 1/3
plateau up to full polarization (m = 1) for sufficiently low
temperature (T � T c

I,H) is well accounted for from the ground
state replacement due to the level crossing near h = 2 and 3
for the Ising and Heisenberg models, respectively, as is seen
in figure 8. For temperatures higher than the characteristic
temperature, these two levels are mixed thermally, and the
plateau then disappears.

The qualitative consistency in these physical quantities
between the single triangle cluster and for the MC results on
two lattices suggest that the thermodynamical properties in the
intermediate temperature regime at degree of J are dominated
by the energy spectra of the triangle trimer. This agrees
with the unrecognizable system-size dependence in the MC
simulation results in the section 2.

To further substantiate the insight obtained, an exact
numerical calculation of susceptibility and specific heat was
carried out for several small-size clusters up to ten or 12 sites
for triangular or kagome clusters, respectively, for the Ising
model, and up to ten sites only for the triangular cluster for
the Heisenberg model. The main features of the calculation
are summarized as follows. In odd-spin-number clusters, the
inverse susceptibility shows the downturn deviation without
exception similar to the single triangle cluster case, irrespective
of the geometry of kagome or triangular or spin models.
However, for even-spin-number clusters, the results cannot
be summarized so simply, because the cluster size could
not be magnified for the Heisenberg model owing to limited
availability of computational facilities. In the Ising case, the
two-leg truss-type triangular clusters, like 10-4 in figure 13,
show diverging deviation toward zero temperature from the
Curie–Weiss-like high-temperature behavior, but all the other
types of clusters investigated, such as one type for six sites,
two types for eight sites and three types for ten sites in
the triangular configuration and one type for 12 sites in
the kagome configuration, show the downturn deviation as
expected. On the other hand, for the Heisenberg model,
the calculated four types of ten-site triangular clusters all
show the diverging upturn in the inverse susceptibility. The
doublet lowest-energy state of an odd number of sites was
pointed out in kagome clusters [19]. Only some of the
results of inverse susceptibility are shown in figures 10 and 11
for Ising and Heisenberg models, respectively, for triangular

6
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clusters. Triangular clusters used in calculations are depicted
in figure 13.

The specific heat has also been calculated for all of these
clusters. In all cases, the hump at the temperature of order
J has been recognized, although these are not shown in the
figures.

We can thus conclusively state that for the Ising spin
the triangle-based two-dimensional lattices are dominated
by trimers in the intermediate-temperature regime, because
an exceptional two-leg truss-type triangular structure should
be regarded as pseudo-one-dimensional and not a two-
dimensional triangle-based lattice. For the Heisenberg case,
although the thermodynamical features cannot be attributed to
trimer formation without showing the downturn behavior in
even-site clusters with more extended magnitude, it is expected
the behavior will be realized even in the Heisenberg model.
The tendency of downturn is, for example, found in 10-1 and
10-2 clusters in figure 11, in a somewhat higher-temperature
region than the temperature turning to the increase.

4. Conclusions and discussions

A mechanism for the downturn in inverse susceptibility
exhibited by many two-dimensional triangle-based spin
systems was proposed as an intrinsic property of triangle-
based lattices, such as triangular and kagome lattices, by
the simulation and exact calculation for single and small-
size clusters of s = 1/2 Ising and Heisenberg models.
Furthermore, it was found that near the temperature of bending
in inverse susceptibility a hump in the specific heat appears,
and below this temperature the 1/3 magnetization plateau is
revealed in its field dependence.

These thermodynamic features bear unremarkable system-
size dependence in the MC simulations and were found
even in a single triangle cluster, both in the Ising and the
Heisenberg models. These results suggest the dominance of
trimer formation. Additional exact numerical calculations for
small-size clusters were carried out to confirm the expectations.
For an Ising model, it is concluded that the intermediate-
temperature properties of a two-dimensional triangle-based
lattice are dominated by the trimer. On the other hand, for
the Heisenberg model, conclusive results were not obtained
by the calculation up to a ten-site cluster, although similar
conclusions as for the Ising case are still expected by extended
calculations to larger-sized clusters [18, 19, 34] with attention
to the correlation between three quantities. The ground
state is believed to be different for the triangular and the
kagome lattices as an ordered and a singlet spin liquid state,
respectively. Yet, the properties at intermediate temperature
have not been clarified until now. The calculation for the
extended-site clusters is desired for both triangular and kagome
geometries. These are now in progress and will be reported
in the future. Furthermore, we may speculate that this fact
may safely interpret the similar temperature dependence found
in three-dimensional triangle-based systems, such as garnet
Gd3Ga5O12 [9].

The specific heat hump and the bend in inverse
susceptibility may be interpreted by the two-level energy

scheme separated by a gap of the order of J (=1) of the
trimer. The 1/3 plateau under a magnetic field is due to the
alignment of trimer spins below the characteristic temperature
at negligibly weak fields (h � 1). For a finite weak
field, the 1/3 plateau may be realized by the three-sublattice
configuration, where the A and B sublattices form the Néel
state forming the honeycomb lattice and the C sublattice is free
from nn interaction, for example, in the triangular lattice. Such
a configuration at h = 0 is now known as the partial disordered
state [22, 23], which does not stabilize as an ordered state [33].

Referring to real systems, ZnCu3(OH)6Cl2, which has
recently been studied as a prototype of the kagome system,
shows the bending of the inverse susceptibility at about T ∼
120 K. The estimated coupling constant is J ∼ 17 meV [8],
corresponding well to the bending temperature. For SCGO,
the bending is found at T = 120 K and J ∼ 100 K [7].
The appearance of the hump of specific heat and of the
1/3 plateau in magnetization is highly desired to be found
at the corresponding temperature near T/J ∼ 1. An
example expected for the corresponding appearance of these
three quantities may be in the triangle cluster compound
La4Cu3MoO12 [12]. Thus, in experimental studies, it is
necessary to pay attention to the relationship between the three
quantities discussed here, especially to the plateau, to which
attention has not been paid previously.

Appendix

Analytical expressions for specific heat C , susceptibility χ

and magnetization under magnetic field m of a single triangle
cluster are summarized for the Ising and the Heisenberg
models. These quantities are denoted with suffix I or H for
the Ising or Heisenberg model, respectively.

The specific heat is given as

CI = 1

T 2

[
1 + 3e−4β

3 + e−4β
− 3

(
1 − e−4β

3 + e−4β

)2
]

,

CH = 3

T 2

[
1 −

(
1 − e−6β

1 + e−6β

)2
]

,

(A.1)

and the susceptibility is

χI = 1

T

1 + 3e−4β

3 + e−4β
,

χH = 1

3T

1 + 5e−6β

1 + e−6β
.

(A.2)

The magnetization under magnetic field h is expressed as

mI = h3
1− − h−3

1+ + h1+ − h−1
1−

h3
1− + h−3

1+ + 3(h1+ + h−1
1−)

,

mH = 1

3

3(h3
1− − h−3

1+) + 2(h3+ − h−1
3−) + h3− − h−1

3+
h3

1− + h−3
1+ + 2(h3+ + h−1

3−) + h3− + h−1
3+

,

(A.3)
with h p± = exp [β(h ± p)].
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